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Abstract

Tracking pedestrians is a vital component of many computer vision applications including surveil-

lance, scene understanding, and behavior analysis. Videos of crowded scenes present significant chal-

lenges to tracking due to the large number of pedestrians and the frequent partial occlusions that they

produce. The movement of each pedestrian, however, contributes to the overall crowd motion (i.e., the

collective motions of the scene’s constituents over the entire video) that exhibits an underlying spatially

and temporally varying structured pattern. In this paper, we present a novel Bayesian framework for

tracking pedestrians in videos of crowded scenes using a space-time model of the crowd motion. We
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represent the crowd motion with a collection of hidden Markov models trained on local spatio-temporal

motion patterns, i.e., the motion patterns exhibited by pedestrians as they move through local space-time

regions of the video. Using this unique representation, we predict the next local spatio-temporal motion

pattern a tracked pedestrian will exhibit based on the observed frames of the video. We then use this

prediction as a prior for tracking the movement of an individual in videos of extremely crowded scenes.

We show that our approach of leveraging the crowd motion enables tracking in videos of complex

scenes that present unique difficulty to other approaches.

Index Terms

Tracking, video analysis, crowded scenes, spatio-temporal motion patterns, hidden Markov models.

I. INTRODUCTION

Tracking objects or people is a crucial step in video analysis with a wide range of applica-

tions including behavior modeling and surveillance. The rising prevalence of video recording

technology in crowded areas presents a dire need for tracking methods that can operate on

videos containing a large numbers of individuals. Due to the large number of pedestrians in

close proximity, crowded areas are at a high risk for dangerous activities including crowd panic,

stampedes, and accidents involving a large number of individuals. Extremely crowded scenes,

such as that shown in Fig. 1, are one such scenario of high-density, cluttered scenes that contain

a large number of individuals. The large amount of activity within such scenes is difficult for

even human observers to analyze, making extremely crowded scenes perhaps in the most need

of automatic video analysis.

Conventional tracking methods typically assume a static background or easily discernible

moving objects, and, as a result, are limited to scenes with relatively few constituents. Videos

of crowded scenes present significant challenges to these object-centric approaches, i.e., those

that focus on representing the motion and appearance of an object or individual in the scene.

Surveillance videos of extremely crowded scenes exhibit three defining characteristics that make

them challenging for such approaches. First, videos of such scenes contain hundreds of pedes-

trians in each frame, and possibly thousands throughout the video, resulting in frequent partial

occlusions. Second, pedestrians may move in any number of different directions depending on

their personal goals, neighboring pedestrians, and physical obstacles within the scene. Finally,
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Fig. 1. Extremely crowded scenes, such as the one shown here from a subway station during rush hour, contain hundreds of

pedestrians in each frame moving in any number of directions and exhibiting frequent partial occlusions. These characteristics

make tracking individuals in videos of such scenes extremely difficult. The movements of pedestrians, however, collectively

contribute to the overall crowd motion whose structure varies spatially across the frame, as illustrated by the pedestrians moving

towards different exits, and temporally over the video, as illustrated by the intersecting trajectories caused by pedestrians moving

in different directions. We track pedestrians in videos of extremely crowded scenes by leveraging the spatially and temporally

varying structure in the crowd motion.

each individual’s appearance may change significantly with their body movements due to the

near-field view of the scene.

The various movements of the individuals, however, contribute to the overall crowd motion, i.e.,

the collective motions of all of the scene’s constituents over the entire video. Though seemingly

chaotic, the crowd motion exhibits a spatially and temporally varying structured pattern due to the

natural behavior of pedestrians. While each individual’s trajectory through the scene may differ,

their instantaneous motions through small areas of the video (i.e., their local spatio-temporal

motion pattern) tend to repeat. For example, many of the pedestrians shown in Fig. 1 move from

the bottom of the frame towards the top left, even though their full trajectories are dissimilar

and spatially separated. The crowd motion may be viewed as a collection of these local spatio-

temporal motion patterns, and used as a scene-centric (i.e., incorporating information from the

entire video) constraint to track individuals.

The local spatio-temporal motion patterns that comprise the crowd motion vary spatially across

the frame and temporally over the video. Spatial variations occur when different pedestrians

concurrently move in different directions. Temporal variations also occur, as illustrated in Fig. 1

by the intersecting trajectories, when pedestrians in the same area of the frame move in different

directions at different times of the video. Temporally sequential local spatio-temporal motion
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patterns are strongly related as they are either exhibited by the same pedestrian or indicate

a transition between two pedestrians, both of which contribute to the overall crowd motion.

Characteristic spatial and temporal variations recur frequently due to the large number of pedes-

trians moving through the scene, and are captured by the fixed-view surveillance systems that

continuously record the scene. Thus, the crowd motion (i.e., the typical space-time dynamics

of the local spatio-temporal motion patterns comprising the collective motion within the scene)

may be learned from a video of the scene and used to predict the motion of individuals moving

through local regions.

In this paper, we track individual pedestrians in videos of extremely crowded scenes by

leveraging a model of the spatially and temporally varying structure in the crowd motion. Our

key idea is to exploit the dynamic latent structured pattern of crowd motion in the scene to

predict the movement of individuals. Specifically, we leverage the crowd motion as a prior in a

Bayesian tracking framework. First, we model the crowd motion as a statistical model of local

spatio-temporal motion patterns that changes spatially across the frame and temporally over the

video. By doing so, we model the time-varying dynamics of the crowd motion that occurs at

and across different spatial locations of the video. Next, we use this temporal model to predict

the local spatio-temporal motion patterns of the individual being tracked. Finally, we use the

predicted local spatio-temporal motion pattern to hypothesize the parameters of a particle filter

to track the target. By using a space-time model of the crowd motion, we are able to accurately

track individuals in crowded scenes that contain pedestrians whose motions vary across the frame

and over time.

Fig. 2 depicts the outline of our approach for tracking pedestrians in videos of extremely

crowded scenes. First, as shown in Fig. 2(a), we divide a training video into spatio-temporal

sub-volumes, or “cuboids,” defined by a regular grid, and model the motion within each using

a local spatio-temporal motion pattern. We then represent the crowd motion with a collection

of hidden Markov models (HMMs), one for each spatial location, trained on the local spatio-

temporal motion patterns. The hidden states of the HMMs encode the multiple possible motions

that can occur at each spatial location. The transition probabilities of the HMMs encode the

time-varying dynamics of the crowd motion. By training a collection of HMMs, we encode the

spatially and temporally varying motions of pedestrians that comprise the entire crowd motion. To

accurately represent the motion within the video, we avoid quantization by training novel HMMs
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Fig. 2. An overview of our model of the crowd motion for tracking in videos of extremely crowded scenes. We divide the

video into spatio-temporal sub-volumes, or cuboids, defined by a regular grid (a) and compute the local spatio-temporal motion

pattern within each. We then train a hidden Markov model (b) on the local spatio-temporal motion patterns at each spatial

location, or tube, of the training video to represent the spatially and temporally varying crowd motion. Using the HMM and

previously observed frames of a separate tracking video of the same scene, we predict (c) the local spatio-temporal motion

pattern that describes how a target moves through the video. Finally, we use this predicted local spatio-temporal motion pattern

to hypothesize a set of priors (d) on the motion and appearance variation of individuals that we wish to track.

whose observations are the local spatio-temporal motion patterns themselves. As illustrated in

Fig. 2(c), we then use this model of the crowd motion to predict local spatio-temporal motion

patterns in a video of the same scene containing the pedestrian that we wish to track. We use this

prediction to hypothesize a full distribution of the optical flow for the cuboids the target currently

occupies. In addition, we hypothesize the amount of appearance variation the target will exhibit

within the cuboids. This is in contrast to our previous work [16], which did not dynamically

adjust for the pedestrian’s changing appearance. We use these predictions as a prior on a particle

filter to track individuals. We demonstrate the ability of our method to track pedestrians in videos

of extremely crowded scenes that present significant difficulty to conventional methods. We show

that our approach accurately predicts the optical flow and appearance variations that a target will

exhibit during tracking. By modeling the crowd motion as a spatially and temporally varying

structured pattern, we achieve more accurate tracking results compared to previous models that

only use a fixed model or disregard temporal information.

II. TRACKING IN CROWDED SCENES

Previous work on tracking are mostly object-centric, based on the modeling of the motion and

appearance of the target individual. Recent work extend these methods to handle crowded scenes

by mainly focusing on deriving a robust appearance model of each individual. A representative
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approach by Zhao et al. [29] tracks multiple pedestrians in videos of crowds by modeling

the camera, human shapes, and the background’s appearance. Though improved accuracy can

be achieved by a more descriptive model of each tracked target, the large amount of partial

occlusions and significant variations in the movement of pedestrians in videos of dense crowds

still present significant challenges to such approaches.

Other object-centric techniques, such as the work by Betke et al. [5], Li et al. [20], or Wu and

Nevatia [28], use object-detection to create short trajectories and then, based on a global model of

all of the objects within the scene, merge the trajectories into the final tracking results. In contrast,

our approach uses global information regarding the entire crowd motion prior to tracking the

individual pedestrians and thus may operate online. In addition, these approaches assume that

the underlying detection is reliable. Videos of extremely crowded scenes may contain over a

hundred pedestrians in a single frame, and possibly thousands throughout the video, resulting

in significant partial occlusions well beyond those found in typical crowded scenes. As such,

they present challenges to detection-based methods since frequently the entire individual is not

visible and correlating detections between frames becomes difficult, if not impossible.

Techniques that track multiple objects, such as that of Hue et al. [10], detect interest points

within each frame to describe the objects within the scene. Tracking is performed concurrently

on all of the objects by establishing correspondences between the points in different frames. As

noted by Khan et al. [13], a single point may be shared between multiple targets and present

ambiguity to the tracker. Shared points are often the result of motion boundaries or clutter, both

of which occur frequently in videos of extremely crowded scenes. Rather than associating points

between frames, our approach predicts the motion and appearance variation a single target will

exhibit between frames. Khan et al. [12] model the interaction among the interest points to

improve the tracking of each object. Due to the large number of pedestrians within extremely

crowded scenes, modeling the interaction among and the separate motion of individual objects

is intractable. By using a scene-centric model of the crowd motion we can track an individual

without explicitly modeling each moving object.

Other work, such as that by Brostow et al. [8] or Sugimura et al. [26], detect individual

moving entities by associating similar feature trajectories. They assume that the subjects move

in distinct directions, and thus disregard possible local motion inconsistencies between different

body parts. As noted by Sugimura et al. [26], such inconsistencies cause a single pedestrian to
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be detected as multiple targets or multiple individuals that move similarly to be detected as the

same target. Extremely crowded scenes, especially when captured in relatively near-field views

as often is the case in video surveillance, necessitate a method that captures the multiple motions

of a single target and also discerns different pedestrians with similar movements.

Ali and Shah [2] track pedestrians in videos of crowded scenes captured at a distance using

a number of “floor fields” that describe how a pedestrian should move based on scene-wide

constraints. Their sink-seeking and boundary floor fields, which describe the exit points and

motion-boundary areas of the frame, respectively, impose a single likely direction at each spatial

location of the video. In contrast, we model the crowd motion as a temporally evolving system

that allows for any number of likely movements in each space-time location of the video. Though

their dynamic floor field allows for some variation with the moving pedestrian, it is computed

using frames after the current tracking position. Our approach uses the previously observed

frames of the video to predict the motion of the target, allowing it to operate online. We compare

the results of our method to that of Ali and Shah in Section VI.

Rodriguez et al. [24] use a topical model to represent motion in different directions at

each spatial location. They represent a local motion in the form of a quantized optical flow

vector at each spatial location of the video. This approach imposes a fixed number of motion

directions at each spatial location, but disregards the temporal relationship between sequentially

occurring local motions that videos of crowded scenes naturally exhibit. We explicitly encode

this relationship with an HMM at each spatial location of the video. In addition, Rodriguez

et al. quantize the optical flow vectors into 10 possible directions, while our approach uses a

full distribution of optical flow for a more robust and descriptive representation of the motion

of tracked targets. Such a coarse quantization limits tracking in crowded scenes to only a few

directions. A finer quantization results in diminishing returns (as discussed by Rodriguez et

al. [24]). We directly compare the results of our method to that of Rodriguez et al. [24] in

Section VI.

The relationship between motion patterns has been used to improve the tracking of motion

boundaries. Nestares and Fleet [21] assume that spatially neighboring motion patterns are similar.

They increase the continuity of the motion boundary tracking from Black and Fleet [7] by using

motion patterns from the local area surrounding the tracked region. In videos of extremely

crowded scenes, however, adjacent pedestrians may move in completely different directions,
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and thus the neighboring local motion patterns that they exhibit are dissimilar. In contrast, we

track pedestrians by modeling the temporal relationship between sequentially occurring local

spatio-temporal motion patterns.

III. SPATIO-TEMPORAL MODEL OF THE CROWD MOTION

We begin by representing the crowd motion as a statistical model of spatially and temporally

varying local spatio-temporal motion patterns. Following our previous work [15], we model the

motion occurring in local regions using a local spatio-temporal motion pattern, and then learn

the spatially and temporally varying crowd motion by training a collection of HMMs on the local

spatio-temporal motion patterns that comprise the video. This is in sharp contrast to previous

bag-of-word models [24] that disregard the temporal relationship between sequentially occurring

local motions.

We use a local spatio-temporal motion pattern to represent the motion occurring in local

space-time regions of the video. As shown in Fig. 2(a), the video is sub-divided into non-

overlapping spatio-temporal sub-volumes, or “cuboids”, defined by a regular grid. We define the

local spatio-temporal motion pattern in each cuboid by a 3D Gaussian distribution N (µ,Σ) of

spatio-temporal gradients. The parameters of the local spatio-temporal motion pattern are

µ =
1

N

N∑
i

∇Ii , (1)

Σ =
1

N

N∑
i

(∇Ii − µ) (∇Ii − µ)T , (2)

where ∇Ii is the 3-dimensional gradient vector (containing gradients estimated in the horizontal,

vertical, and temporal directions) at pixel location i and N is the number of pixels in the cuboid.

We extract this local spatio-temporal motion pattern at each space-time location of the video.

Therefore, at spatial location n and temporal location t, the local spatio-temporal motion pattern

On
t is represented by µnt and Σn

t .

Other work [9], [14], [18] have used distributions of gradients to describe space-time volumes.

Histograms of oriented gradients (HoG) features have been used for human detection [9] and

action recognition [18]. The HoG feature is computed on the spatial gradients (the temporal

gradient is not used), though they have been extended to the 3D space-time gradient [14].

Rather than modeling a distribution of the gradients’ orientations, we use a Gaussian distribution
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to represent the shape of the 3D gradient points. This retains the capability of estimating the

optical flow from the 3D gradients, as we show explicitly in Section V-A.

The local spatio-temporal motion patterns in a specific location of the frame may change

frequently (due to different pedestrians moving in different directions through the same spatial

location) or gradually with the time of day (for instance, with the arrival of public transportation).

As shown in Fig. 2(b), we encode these temporal dynamics by training a hidden Markov model

(HMM) at each spatial location of the video. Temporally sequential local motion patterns are

strongly related: either they are exhibited by two pedestrians moving in the same direction (i.e.,

creating a uniform crowd motion) or represent a change in direction, both of which contribute

to the overall crowd motion. Areas of the scene with frequently changing local motion patterns

often contain pedestrians changing between a few different directions (e.g., pedestrians moving

towards different exits). Such frequent changes between different local spatio-temporal motion

patterns are represented by high transition likelihoods in the HMMs. While gradual variations

(such as those caused by the arrival of public transportation) are not represented by the HMMs,

they do cause variations in pedestrians’ movements that impact the transition likelihoods in the

HMM. If such events occur regularly, for instance, then the transition between the corresponding

local movements of pedestrians would have a significant transition likelihood.

Complex motion representations are often quantized to reduce the computational complexity

of hidden Markov models. Quantizing the 3D Gaussians, however, would reduce the rich infor-

mation that they represent. We retain our local spatio-temporal motion pattern representation (i.e.,

a 3D Gaussian distribution of spatio-temporal gradients) by modeling a novel HMM that can be

trained directly on the 3D Gaussians. Specifically, the hidden states of the HMM are represented

by a set of local spatio-temporal motion patterns {Ps|s = 1, . . . , S} that are themselves 3D

Gaussian distributions. For a specific hidden state s, the probability of an observed motion

pattern On
t (defined by µnt and Σn

t ) is

p (On
t |s) =

1√
πσ2

s

exp

[
−d̃ (On

t , Ps)
2

2σ2
s

]
, (3)

where Ps is the expected local spatio-temporal motion pattern, σs is the standard deviation, and

d̃ (·) is the Kullback-Leibler (KL) divergence [17]. The number of hidden states S, as well as

an initial classification for each cuboid, is determined by an online clustering algorithm [15].

August 2, 2011 DRAFT



10

The expected motion pattern Ps = {µs,Σs} is

µs =
1

Ns

Ns∑
i

µi , (4)

Σs =
1

Ns

Ns∑
i

(Σi + µiµ
T
i )− µsµTs , (5)

where Ns is the number of local spatio-temporal motion patterns in the cluster s. The remaining

parameters of the HMM are computed using the Baum-Welch algorithm [23].

By training an HMM at each scene location, we directly encode the multiple possible motions

that can occur at each location and their temporal relationship with the HMM’s transition

probabilities. The KL-divergence based densities emit the mean and covariance matrix of 3D

Gaussians, retaining the rich motion information stored in the space-time gradients. This collec-

tion of novel HMMs allows us to represent the space-time dynamics of the crowd motion that

exists in crowded scenes.

IV. PREDICTING AN INDIVIDUAL’S MOTION PATTERNS

We train our model of the crowd motion on a video of a crowded scene containing typical

crowd behavior. Next, we use it to predict the local spatio-temporal motion patterns at each

location of a different video of the same scene. Note that, since we create a scene-centric model

based on the changing motion in local regions, the prediction is independent of which individual

is being tracked. In fact, we predict the local spatio-temporal motion pattern at all locations of

video volume given only the previous frames of the video.

Given a trained HMM at a specific spatial location and a sequence of observed local motion

patterns O1, . . . , Ot−1 from the tracking video, we predict the local spatio-temporal motion pattern

at the next time instance t. The predictive distribution of Ot is

p (Ot|O1, . . . , Ot−1) =
∑
s∈S

p (Ot|s)
∑
s′∈S

p (s|s′) α̂t−1 (s′) , (6)

where S is the set of hidden states in the HMM, s and s′ are state indices, and α̂ is the vector of

scaled messages from the forwards-backwards algorithm [23]. We let γ(s) represent the second

summation in Eq. 6 that combines the transition distribution p (s|s′) between specific states s

and s′ and the posterior likelihoods α̂. The vector γ(s) is defined by

γ (s) =
∑
s′∈S

p (s|s′) α̂ (s′) . (7)
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We predict the next local spatio-temporal motion pattern by taking the expected value of the

predictive distribution (Eq. 6). The predicted local spatio-temporal motion pattern Õt is

Õt = E [p (Ot|O1, . . . , Ot−1)] =
∑
s∈S

E [p (Ot|s)] γ (s) . (8)

The expected value of the emission probability p (Ot|s) is the local spatio-temporal motion

pattern Ps = {µs,Σs}. Therefore, the predicted local spatio-temporal motion pattern (defined

by µ̃t and Σ̃t) is a weighted sum of the set of 3D Gaussian distributions associated with the

HMM’s hidden states

µ̃t =
∑
s∈S

γ (s)µs , (9)

Σ̃t = −µ̃tµ̃
T
t +

∑
s∈S

γ (s)
(
Σs + µsµ

T
s

)
, (10)

where µs and Σs are the mean and covariance of the hidden state s, respectively.

During tracking, we use the previous frames of the video to predict the local spatio-temporal

motion pattern that spans the next M frames (where M is the number of frames in a cuboid). The

computational complexity of HMMs is well known [6], but is increased by a constant factor due

to use of the KL-divergence in Eq. 3 that requires an inversion of the 3× 3 covariance matrices.

Since the predictive distribution (Eq. 6) is a function of the HMM’s transition probabilities and

the hidden states’ posteriors, the prediction may be computed on-line and efficiently during

the forward phase of the forwards-backwards algorithm [23]. Specifically, the forward phase

computes the posterior likelihoods α̂ in Eq. 8 efficiently using dynamic programming, and may

be computed incrementally. The forward phase used in Eq. 6 takes O(S2) for each prediction

where S is the number of hidden states. We train the HMMs using Expectation Maximization [6]

which repeats the forwards-backwards algorithm until convergence, and thus requires more time

than the prediction.

V. TRACKING INDIVIDUALS

We now use the predicted local motion pattern to track individuals in a Bayesian framework.

Specifically, we use the predicted local spatio-temporal motion pattern as a prior on the parame-

ters of a particle filter. Our space-time model of the crowd motion, i.e., the collection of HMMs,

enables these priors to vary in space-time and dynamically adapt to the changing motions within

the crowd.
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frame f−1

Previous Local
Motion Patterns Predicted Local

Motion Pattern(x,y)

w

h

Fig. 3. The state vector xf−1=[x, y, w, h] defines a window around the tracked target at image location (x, y) with dimensions

(w, h). We use the predicted local spatio-temporal motion pattern at the center of the tracked target to estimate priors on the

distribution of the next state xf .

Tracking can be formulated in a Bayesian framework [11] by maximizing the posterior

distribution of the state xf of the target at time f given past and current measurements z1:f =

{zi|i = 1 . . . f}. Note that the index of each frame f is different from the temporal index t of the

local spatio-temporal motion patterns (since the cuboids span many frames). We define state xf

as a four-dimensional vector [x, y, w, h]T containing the tracked target’s 2D location (in image

space), width, and height, respectively. The posterior distribution is

p(xf |z1:f )∝p(zf |xf )
∫
p(xf |xf−1) p(xf−1|z1:f−1) dxf−1 , (11)

where zf is the frame at time f , p (xf |xf−1) is the transition distribution, p (zf |xf ) is the

likelihood, and p(xf−1|z1:f−1) is the posterior from the previous tracked frame. The transition

distribution p (xf |xf−1) models the motion of the target between frames f−1 and f , and the

likelihood distribution p (zf |xf ) represents how well the observed image zf matches the state

xf . Often, the distributions are non-Gaussian, and the posterior distribution is estimated using

a Markov chain Monte Carlo method such as a particle filter [11] (please refer to [3] for an

introduction to particle filters).

As shown in Fig. 3, we impose priors on the transition p (xf |xf−1) and likelihood p (zf |xf )

distributions using the predicted local spatio-temporal motion pattern at the space-time location

defined by xf−1. For computational efficiency, we use the cuboid at the center of the tracked

target to define the priors, although the target may span several cuboids across the frame.
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A. Transition Distribution

We use the predicted local spatio-temporal motion pattern to hypothesize the motion of the

tracked target between frames f−1 and f , i.e., the transition distribution p(xf |xf−1). Let the

state vector xf =
[
kTf ,d

T
f

]T where kf = [x, y] is the target’s location (in image coordinates)

and df = [w, h] the size (width and height) of a bounding box around the target. In this work,

we focus on the target’s movement between frames and use a second-degree auto-regressive

model [22] for the transition distribution of the size df of the bounding box.

The transition distribution of the target’s location p (kf |kf−1) reflects the 2D motion of the

target between frames f−1 and f . We model this as a normal distribution defined by

p (kf |kf−1) = N (kf − kf−1;ω,Λ) , (12)

where ω is the 2D optical flow vector and Λ is its covariance matrix.

We estimate the parameters ω and Λ from the predicted local spatio-temporal motion pattern

at the space-time location containing kf−1; i.e., we predict the transition distribution using the

crowd motion. The predicted motion pattern Õ (given by Eq. 8) is defined by a mean gradient

vector µ̃ and a covariance matrix Σ̃ (we have dropped the n and t for notational convenience).

The relationship between space-time gradients and optical flow has been well studied [25], [27],

specifically in the form of the structure tensor matrix

G̃ = Σ̃+ µ̃µ̃T . (13)

The 3D optical flow can be estimated [25] from the structure tensor by solving

G̃w = 0 , (14)

where w = [u, v, z]T is the 3D optical flow. Assuming that the change in time is 1, the 2D

optical flow is ω = [u/z, v/z]T . The 3D optical flow is the structure tensor’s eigenvector with

the smallest eigenvalue [27]. Thus, we compute the 2D optical flow ω from the predicted local

motion pattern by solving for the smallest eigenvector of G̃.

Next, we estimate the covariance matrix Λ of the 2D optical flow from the same predicted

structure-tensor matrix G̃. As shown in Fig. 4, the 3D optical flow w is orthogonal to the plane

containing the space-time gradients. The ordered eigenvalues λ1, λ2, λ3 of G̃ encode a confidence

of the optical flow estimate [27]. If the video volume contains a single dominant motion vector

and sufficient texture, then G̃ is close to rank 2 and λ3 � λ1, λ2. We model the confidence in the

optical flow estimate as inversely proportional to its variance, and thus consider the eigenvalues
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3D Optical
Flow Vector w

ω

v1

v2

Distribution of
Spatio-temporal Gradients

f = 1

Fig. 4. We hypothesize a full distribution of optical flow for the tracked target using the local spatio-temporal motion pattern

predicted by the crowd motion. The 3D optical flow w is estimated from the predicted local spatio-temporal motion pattern as

the structure tensor’s eigenvector with the smallest eigenvalue. The 2D optical flow ω is its projection onto the plane f = 1 and

represents the predicted movement of the target. We estimate the optical flow’s variance by projecting the other two eigenvectors

v1 and v2 onto the same plane, and by scaling them with respect to the eigenvalues.

of G̃ inversely proportional to the eigenvalues of Λ. If G̃ is close to full rank, then the gradients

are not co-planar and the 3D optical flow may vary in the primary directions of the gradient

distributions (i.e., the other eigenvectors of G̃). The optical flow vector ω is a projection of the

3D optical flow w onto the plane f = 1. We let the eigenvectors of Λ be the projection of the

other two eigenvectors v1 and v2 of G̃ onto the same plane. This encodes uncertainty in the

primary directions of the spatio-temporal gradients. Therefore, we estimate Λ by

Λ = [v′1,v
′
2]

 λ3
λ1

0

0 λ3
λ2

 [v′1,v
′
2]
−1
, (15)

where v′1 and v′2 are the projections of v1 and v2 onto the plane f = 1. The 2D covariance

matrix Λ implies a larger variance when the optical flow estimate is poor, and a smaller variance

when the optical flow estimate is reliable.

In summary, we hypothesize the parameters to the transition distribution at the space-time

location of the target based on the local spatio-temporal motion pattern predicted from the

crowd motion. We use the rich motion information encoded in the space-time gradients of the

predicted local motion pattern to hypothesize a full distribution of the 2D optical flow. By doing
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so, the state-transition distribution is robust to unreliable flow estimates and dynamically adapts

to the space-time dynamics of the crowd.

B. Likelihood Distribution

Next, we use the predicted local motion pattern as a prior on the likelihood distribution

p (zf |xf ). The density of the crowd makes it difficult to discern the target from other pedestrians.

In addition, the individual’s appearance may change significantly from frame to frame due to

their natural body movement or partial occlusion from surrounding pedestrians. The change

in a pedestrian’s appearance between frames is directly related to the motion at their specific

space-time location. Intuitively, as an individual walks through the scene, their body may exhibit

movement in different directions [26] or partial occlusions may cause a motion boundary. We

use the predicted local motion pattern to hypothesize the amount of variation the pedestrian’s

appearance will undergo, and use it to model the variance of the likelihood distribution p (zf |xf )

in Eq. 11. By doing so, we adjust the likelihood distribution to account for dramatic appearance

changes predicted by the crowd motion.

Typical models of the likelihood distribution maintain a template T that represents the target’s

characteristic appearance in the form of a color histogram [22] or an image [2]. The likelihood

distribution p (xf |z1:f ) is then modeled using the template T and the region R (the bounding

box defined by state xf ) of the observed image zf by

p (zf |xf ) =
1

Z
exp

[
−d (R, T )2

2σ2

]
, (16)

where σ is the variance, d(·) is a distance measure, and Z is a normalization constant. Rather

than using color histograms [22] or intensity [2] as the defining characteristic of an individual’s

appearance, we model the template T as an image of the individual’s spatio-temporal gradients.

This representation is more robust to appearance variations caused by noise or illumination

changes. We define the distance measure d(·) as a weighted sum of the angles between the

spatio-temporal gradient vectors in the observed region and the template

d (R, T ) =
M∑
i

ρfi arccos (ti · ri) , (17)

where M is the number of pixels in the template, ti is the normalized spatio-temporal gradient

vector in the template, ri is the normalized spatio-temporal gradient vector in the region R of

the observed image at frame f , and ρfi is the weight of the pixel at location i and frame f ,
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We model changes in the target’s appearance by estimating the weights
{
ρfi |i = 1, . . . ,M

}
in Eq. 17 during tracking. Specifically, pixels that change drastically (due to the pedestrian’s

body movement or partial occlusions) exhibit a large error between the template and the ob-

served region. We estimate this error Ef
i during tracking to account for a pedestrian’s changing

appearance. The error at frame f and pixel i is

Ef
i = α arccos (ti · ri) + (1− α)Ef−1

i , (18)

where α is the update rate (set to 0.05) and ti and ri are again the gradients of the template

and observed region, respectively. To reduce the contributions of frequently changing pixels to

the distance measure, the weight at frame f and pixel i is inversely proportional to the error

ρfi =
1

Z

(
π − Ef−1

i

)
, (19)

where Z is a normalization constant such that
∑

i ρ
f
i = 1.

Finally, we hypothesize the variance σ2 (from Eq. 16) of the likelihood to account for further

variations in the pedestrian’s appearance (i.e., due to the individual’s natural body movement

or partial occlusions). This is in contrast to our previous method [16] that assumes a constant

variance and uses color information to reduce the sensitivity to appearance changes. Intuitively,

tracking a pedestrian whose appearance changes frequently requires a larger variance to account

for more variation and avoid drift. Alternatively, tracking a pedestrian whose appearance changes

infrequently benefits from a smaller variance for more accurate results. Similar to the transition

distribution, we hypothesize σ2 using the predicted local spatio-temporal motion pattern at the

space-time location that the state xf−1 occurs. The covariance of the predicted local spatio-

temporal motion pattern is a 3× 3 matrix

Σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (20)

of spatio-temporal gradients. We consider σzz (i.e., the variance of the temporal gradient) repre-

sentative of the amount of appearance change that occurs within the cuboid: temporal gradients

from frequent appearance changes have a larger variance. The degree of change, however,

depends on the appearance of the specific target. Intuitively, targets with a large amount of texture

will naturally exhibit local spatio-temporal motion patterns with larger values of σzz. Thus, we
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(a) (b) (c) (d)

Fig. 5. Frames from videos of four different scenes on which we evaluate our method. The first two scenes, (a) and (b), are

from a crowded subway station during rush hour and contain pedestrians moving in any number of different directions. The

faces in the train station scenes have been blurred to conceal identities. The third scene (c) from the UCF Crowd Dataset [1]

contains pedestrians avoiding one another. The final scene (d), also from the UCF Crowd Dataset, contains pedestrians walking

across an intersection in two different directions.

consider σzz proportional to the variance σ2 of the likelihood distribution, and estimate it by

σ2 = Cσ2
zz , (21)

where C is a scaling factor selected empirically (typically results are satisfactory letting C = 50).

To summarize, we use the predicted local spatio-temporal motion pattern as a prior on the

variance of the likelihood distribution. Intuitively, targets that exhibit larger variations in their

motion will have larger variance. Using both our hypothesized state transition distribution and

likelihood distribution, we track individuals in videos of extremely crowded scenes based on the

crowd motion.

VI. RESULTS

We evaluate our method on videos1 of four scenes: two real-world extremely crowded scenes2

and two videos from the UCF Crowd Dataset [1], frames of which are shown in Fig. 5. The

first, which is from a train station’s concourse, contains a large number of pedestrians moving

in different directions. The second, from the station’s ticket gate, contains pedestrians moving

through turnstiles and then changing directions after exiting the gate. The faces in the train

station scenes have been blurred to conceal identities. The third scene contains many pedestrians

captured in a relatively close view on a sidewalk moving in a number of different directions.

The fourth contains pedestrians moving in different directions as they cross an intersection. We

use a sampling importance re-sampling particle filter as in [11] with 100 particles to estimate

1Please see the supplementary material for video results.
2The original videos courtesy of Nippon Telegraph and Telephone Corporation.
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the posterior in Eq. 11. The computation of the transition distribution in Eq. 14 and Eq. 15

require a singular value decomposition on a 3× 3 matrix which may be done efficiently using

any standard numerical technique. Our implementation of the tracker runs at roughly 10 frames

per second on an Intel Xeon X5355 2.66 GHz processor, though we have made no attempt to

optimize the software.

We train a collection of HMMs on a video3 of each scene, and use it to track pedestrians in

videos of the same scene recorded at a different time. The training videos for each scene have

300, 350, 300, and 120 frames, respectively. The training videos for the concourse, ticket gate,

and sidewalk scenes have a large number of pedestrians moving in a variety of directions. The

video for the intersection scene has fewer frames due to the limited length of video available.

In addition, the training video of the intersection scene contains only a few motion samples in

specific locations, as many of the pedestrians have moved to other areas of the scene in that

point in time. Such sparse samples, however, still result in a useful model since most of the

pedestrians are only moving in one of two directions (either from the lower left to the upper

right, or from the upper right to the lower left).

Due to the perspective projection of many of the scenes, which is a common occurrence in

surveillance, the sizes of pedestrians varies immensely. As such, the initial location and size of

the targets are selected manually. Many methods exist for automatically detecting pedestrians

and their sizes [9] even in crowded scenes [19]. We consider pedestrian detection beyond the

scope of this paper, and focus solely on the problem of tracking from an initial size and location.

We are confident, however, that any pedestrian detector designed for crowded scenes may be

used to automatically initialize our method.

The motion represented by the local spatio-temporal motion pattern depends directly on

the size of the cuboid. Ideally, we would like to use a cuboid size that best represents the

characteristic movements of a single pedestrian. Cuboids the size of a single pedestrian would

faithfully represent the pedestrian’s local motion and therefore enable the most accurate prediction

and tracking. The selection of the cuboid size, however, is entirely scene-dependent, since the

relative size of pedestrians within the frame depends on the camera and physical construction

of the scene. In addition, a particular view may capture pedestrians of different sizes due to

3Please see the supplementary material for the training videos.
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Fig. 6. Effects of varying the distance threshold dKL on the training video of the concourse scene. (a) the average number of

hidden states for all tubes using different values of dKL. The bars show the standard deviation. The distribution of the direction

of the predicted optical flow vector for dKL=1 (b) and dKL=3 (c). The number of states decreases with larger distance values,

and result in a more rigid model as indicated by the sparse distribution of predicted flow directions.

perspective projection. We use a cuboid of size 10× 10× 10 on all scenes so that a majority of

the cuboids are smaller than the space-time region occupied by a moving pedestrian. By doing

so, the cuboids represent the motion of a single pedestrian but still contain enough pixels to

accurately estimate a distribution of spatio-temporal gradients. We will explore the automatic

detection of cuboid sizes in future work, but note that, since the cameras recording the scenes

are static, the sizes must be determined only once for each scene prior to training. Therefore, the

cuboid sizes may be determined by a semi-supervised approach that approximates the perspective

projection of the scene.

The accuracy of our predictions depends heavily on the number of hidden states in each HMM.

The online clustering algorithm [15] uses a distance threshold dKL to vary the number of hidden

states depending on the local motion patterns within the video. Large variations in the flow may

result in an excessive number of hidden states. For example, the same pedestrian moving at

two different speeds may result in two different motion patterns, and such behavior from many

pedestrians may vastly increase the number of hidden states (and therefore the complexity) of

our model.

Fig. 6(a) shows the number of hidden states, averaged over all of tubes in the video, for

different values of dKL on the training video from the concourse scene. Small values of dKL

result in a larger number of hidden states, but require a longer training video to achieve stable

HMMs. As dKL approaches 2 the number of hidden states stabilizes, suggesting a small number

of distinct motion patterns in the video. Fig. 6(b) and Fig. 6(c) show the histograms of the
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Fig. 7. The angular error between the predicted optical flow vector and the observed optical flow vector, averaged over all

frames in the video, for the concourse, ticket gate, sidewalk, and intersection scenes, respectively. White indicates a high error

for predicted motion patterns in areas with little texture such as the ceiling of the train station. Areas in the concourse and

ticket gate scenes where pedestrians are present, however, contain enough spatio-temporal gradient information for a successful

prediction. The sidewalk scene contains errors due to the background occasionally being visible, or pedestrians with little texture.

The intersection scene contains larger errors in high motion areas of the frame due to the small amount of training data.

predicted optical flow directions for the query video of the concourse scene using HMMs trained

with dKL = 1 and dKL = 3, respectively. Larger values of dKL impose a more limited number

of directions on the transition distribution, as shown by the sparser distribution in Fig. 6(c). We

empirically select the value of dKL near 1 for each training video to represent a large number

of different motion patterns within each tube while ensuring sufficient flexibility and stability of

the model.

We measure the accuracy of the predicted local spatio-temporal motion patterns using the

angular error [4] between the optical flow estimated from the predicted structure tensor G̃ and

the optical flow estimated from the actual structure tensor matrix G. Fig. 7 shows the angular

error averaged over the entire video for each spatial location in all four scenes. Noisy areas with

little motion, such as the concourse’s ceiling, result in higher error due to the lack of reliable

gradient information. High motion areas, however, have a lower error that indicates a successful

prediction of the local spatio-temporal motion patterns. The sidewalk scene contains errors in

scattered locations due to the occasional visible background in the videos and close-view of

pedestrians. There is a larger amount of error in high-motion areas of the intersection scene

since a relatively short video was used for training.

Fig. 8 shows the predicted optical flow, colored by key in the lower left, for four frames from

the sidewalk scene. Pedestrians moving from left to right are colored red, those moving right to

left are colored green, and those moving from the bottom of the screen to the top are colored

blue. As time progresses, our space-time model dynamically adapts to the changing motions

of pedestrians within the scene as shown by the changing cuboid colors over the frames. Poor

predictions appear as noise, and occur in areas of little texture such as the visible areas of the
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Fig. 8. Four frames from the sidewalk scene, colored to indicate the direction of the predicted optical flow using the key on

the lower left. Our space-time model dynamically adapts to changes in the motion of pedestrians, as indicated by the changing

directions of flow. Noise corresponds to poor predictions and occur in areas of little texture, such as the visible sidewalk.

Fig. 9. The direction of the predicted optical flow for the same spatial location in different frames of the sidewalk scene. Our

temporally varying model accurately predicts the changing direction of pedestrians as the video progresses.

sidewalks or pedestrians with little texture.

Fig. 9 shows a specific example of the changing predicted optical flow on six frames from the

sidewalk scene. In the first two frames the predicted flow is from the left to the right, correctly

corresponding to the motion of the pedestrian. In later frames the flow adjusts to the motion of

the pedestrian at that point in time. Only by exploiting the temporal structure within the crowd

motion are such dynamic predictions possible.

Fig. 10 shows frames of a target during tracking and the variance of the likelihood distribution

that we hypothesize from the predicted local spatio-temporal motion patterns. The frames shown

in the top row are indicated on the plot by blue boxes. When the target’s appearance changes, for

instance due to the partial occlusions on frames 56, 112, and 201, the variance is larger. The tar-

get’s appearance has less variation in frames 29, 71, 154, and 171, and the hypothesized variance

is also lower, allowing for more accurate tracking due to a narrower likelihood distribution.

Fig. 11 shows a visualization4 of our tracking results on videos from each of the different

scenes. Each row shows 4 frames of our method tracking different targets whose trajectories

4Please see the supplementary material for video results.
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Fig. 10. The predicted variance of our likelihood distribution (bottom) and some sampled frames of the tracked target (top).

When the target’s appearance changes due to partial occlusions the variance increases, creating a smoother likelihood function

of the target’s appearance.

are shown up to the current frame by the colored curves. The different trajectories in the same

spatial locations of the frame demonstrate the ability of our approach to capture the temporal

motion variations of the crowd. For example, the green target in row 1 is moving in a completely

different direction than the red and pink targets, although they share the spatial location where

their trajectories intersect. Similarly, the pink, blue, red, and green targets in row 2 all move

in different directions in the center part of the frame, yet our method is able to track each of

these individuals. Such dynamic variations that we model using an HMM cannot be captured

by a single motion model such as a “floor fields” [2]. Spatial variations are also handled by our

approach, as illustrated by the targets concurrently moving in completely different directions in

rows 5 and 6. In addition, our method is robust to partial occlusions as illustrated by the pink

target in row 1, and the red targets in rows 3, 5, and 6.

Fig. 12 shows a failure case due to a severe occlusion. In these instances our method begins
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Fig. 11. Frames showing our method of tracking pedestrians in videos of the concourse, ticket gate, sidewalk, and intersection

scenes, respectively. The faces in the train station scenes have been blurred to conceal identities. The video sequence in each row

progresses from left to right, and each curve shows the target’s trajectory up to the current frame. Please see the supplementary

material for video results.

August 1, 2011 DRAFT

Fig. 11. Frames showing our method of tracking pedestrians in videos of the concourse, ticket gate, sidewalk, and intersection

scenes, respectively. The faces in the train station scenes have been blurred to conceal identities. The video sequence in each row

progresses from left to right, and each curve shows the target’s trajectory up to the current frame. Please see the supplementary

material for video results.
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Fig. 12. Four frames showing a tracking failure due to a severe occlusion. Our method begins tracking the occluding pedestrian.

The faces have been blurred to conceal identities.

Fig. 13. Occasionally, pedestrians move in directions not in by the training data, such as the one moving from left to right in

the concourse scene (left) or reversing direction in the ticket gate scene (right). On such occasions, the predicted optical flow is

unreliable and tracking depends entirely on the likelihood distribution. Our method is able to track such pedestrians, as shown

above, but is less robust to partial occlusions and appearance changes.

tracking the individual that caused the occlusion. This behavior, though not desired, shows the

ability of our model to capture multiple motion patterns since the occluding individual is moving

in a different direction. Other tracking failures occur due to poor texture. In the sidewalk scene,

for example, the occasional viewable background and lack of texture on the pedestrians cause

poorly-predicted local spatio-temporal motion patterns. On such occasions, a local motion pattern

that describes a relatively static structure, such as black clothing or the street, is predicted for a

moving target. This produces non-smooth trajectories, such as the pink and red targets in row

5, or the red target in row 6 of Fig. 11.

Occasionally, an individual may move in a direction not captured by the training data. For

instance, the pedestrian shown on the left of Fig. 13 is moving from left to right, a motion

not present in the training data. Such cases are difficult to track since the space-time model

can not predict the pedestrian’s motion. On such occasions, the posteriors (given in Eq. 7) are

near identical (since the emission probabilities are all close to 0), and thus the predicted optical

flow is unreliable. This does not mean the targets can not be tracked, as shown by the correct

trajectories in Fig. 13, but the accuracy of the tracking depends heavily on the target’s unique

appearance.

We hand-labeled ground truth tracking results for 40 targets, 10 from each scene, to quanti-
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Fig. 14. The average magnitude of the error vector using our method, a color-based particle filter with a second-degree auto-

regressive model [22] (Pérez), and using only our transition distribution with a color-based likelihood (TransOnly) for targets

in the concourse (C), ticket gate (T), sidewalk (S), and intersection (I) scenes. Our method achieves consistently lower errors.

tatively evaluate our approach. Each target is tracked for at least 120 frames. The ground truth

includes the target’s position and the width and height of a bounding box. The concourse and

ticket gate scenes contain many pedestrians whose lower bodies are not visible at all over the

duration of the video. On such occasions, the ground truth boxes are set around the visible torso

and head of the pedestrian. Given the ground truth state vector yt, we measure the error of the

tracking result x̂t as ||yt − x̂t||2.

Fig. 14 shows the error of our method for each labeled target, averaged over all of the frames

in the video, compared to a particle filter using a color-histogram likelihood and second-degree

auto-regressive model [22] (labled as Perez). In addition, we show the results using our predicted

state-transition distribution with a color-histogram likelihood (labeled as Transition Only). On

many of the targets our state transition distribution is superior to the second-degree autoregressive

model, though 9 targets have a higher error. Our full approach improves the tracking results

dramatically and consistently achieves a lower error than that of Pérez et al. [22].

Fig. 15 compares our approach with the “floor fields” method by Ali and Shah [2] and the
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Fig. 15. The magnitude of the error vector for 40 targets, 10 from each scene, using our approach, that of Ali and Shah [2],

and Rodriguez et al. [24]. Our approach achieves a lower error almost all targets.

topical model from Rodriguez et al. [24]. Since the other methods do not change the target’s

template size, we only measured the error in the x, y location of the target. Our approach more

accurately tracks the pedestrian’s locations in all but a few of the targets. The single motion model

by Ali and Shah completely loses many targets that move in directions not represented by their

single motion model. The method of Rodriguez et al. [24] models multiple possible movements,

and thus achieves better results than that of Ali and Shah, but is still limited since it does not

include temporal information. Our temporally varying model allows us to track pedestrians in

scenes that exhibit dramatic variations in the crowd motion.

Fig. 16 compares our results to two variants of our method. First, we compute the transition

distribution from all of the cuboids spanned by the pedestrian (All Cuboids), rather than simply

the center cuboid. All of the predicted motion patterns spanned by the pedestrian’s bounding box

are averaged using Gaussian weights. The results using all cuboids are negligibly different for

the increased computational cost. This is primarily due to the fact that the cuboid at the center

of the pedestrian is less likely to be corrupted by their articulated motion or a partial occlusion.

Second, we compare to a model that only uses optical flow vectors. We train a collection of
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Fig. 16. The average magnitude of the error vector using our approach, our approach using all cuboids the target spans (All

Cuboids), and using only an optical-flow based prediction (Optical Flow). No discernible benefit is achieved by using all of the

cuboids a pedestrian spans. HMMs trained on the optical flow vectors do not retain the rich distribution of flow within the local

spatio-temporal motion patterns, and result in high errors.

HMMs on the dominant optical flow vector estimated from each cuboid. The number of hidden

states is set to the same number of hidden states as our motion pattern HMMs, and the emission

distributions are multi-variate Gaussians. Such a model does not retain enough information to

hypothesize a covariance matrix of the optical flow or the variance of the likelihood, and thus has

higher tracking errors. The optical flow model performed well on many targets in the intersection

scene since most of the pedestrians moved in one of two directions.

Fig. 17 shows the tracking error over time, averaged over all of the targets, using our approach,

that of Ali and Shah [2], and that of Rodriguez et al. [24]. The consistently lower error achieved

by our approach indicates that we may track subjects more reliably over a larger number of

frames. Our temporally varying model accounts for a larger amount of directional variation

exhibited by the targets, and enables accurate tracking over a longer period of time.

VII. CONCLUSION

In this paper, we use a novel, space-time model of the crowd motion as a set of priors for

tracking individuals in videos of extremely crowded scenes. We have shown that by modeling
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Fig. 17. The average error of all 40 targets over time using our approach, that of Ali and Shah [2], and Rodriguez et al. [24].

Our approach maintains a consistently lower error.

the crowd motion as a space-time dynamical system, we may represent scenes containing

pedestrians whose speed and direction vary spatially across the frame and temporally over

the video. Furthermore, our novel statistical models of local spatio-temporal motion patterns

provide the flexibility to hypothesize full distributions of optical flow, as well as the amount

of variation in the pedestrians appearance, both of which increase robustness while tracking in

videos of crowded scenes. Our results show that our collection of hidden Markov models is able

to accurately predict the changing motion of pedestrians by encoding the scene’s underlying

temporal dynamics, and that our method is more accurate than those that do not model the

space-time variations in the crowd motion. In addition, we have shown that the crowd motion

may be learned from a typical video of the scene prior to tracking, and presented a method

that may operate efficiently and online. We believe that our space-time model may be further

leveraged to provide robustness to failure cases, such as severe occlusions, and are exploring such

possibilities for future work. Finally, we view tracking as only a single step in understanding and

automatically analyzing videos of crowded scenes, a challenge that we believe our space-time

model of local spatio-temporal motion patterns may further address.
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