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Abstract. Video analysis of crowded scenes is challenging due to the complex
motion of individual people in the scene. The collective motion of pedestrians
form a crowd flow, but individuals often largely deviate from it as they anticipate
and react to each other. Deviations from the crowd decreases the pedestrian’s
efficiency: a sociological concept that measures the difference of actual motion
from the intended speed and direction. In this paper, we derive a novel method
for estimating pedestrian efficiency from videos. We first introduce a novel crowd
motion model that encodes the temporal evolution of local motion patterns repre-
sented with directional statistics distributions. This model is then used to estimate
the intended motion of pedestrians at every space-time location, which enables
visual measurement of the pedestrian efficiency. We demonstrate the use of this
pedestrian efficiency to detect unusual events and to track individuals in crowded
scenes. Experimental results show that the use of pedestrian efficiency leads to
state-of-the-art accuracy in these critical applications.

1 Introduction

A key challenge to video analysis of crowded scenes is the complex motion introduced
by the intricate interactions between individual pedestrians. The large number of peo-
ple and their aggregated motion give rise to coherent motion that form the crowd flow.
Individuals in the crowd, however, constantly anticipate and react to others surrounding
them, causing pauses or changes in direction and speed. These subtle variations of indi-
vidual motion result in often large deviations from the crowd flow. These deviations are
the main source of difficulty for video analysis as they make individual tracking chal-
lenging for a microscopic approach and reduces the accuracy of crowd motion models
in a macroscopic approach.

Often pedestrians deviating from crowd flow are reacting to an interruption (e.g.,
someone cutting them off) or congestion. In such cases, the individual avoids colli-
sion by deviating from their intended motion. Efficiency is a well studied measure in
sociology [1] that quantifies the difference between the actual pedestrian motion and
his/her intended speed and direction. Helbing et al. [2] define and measure efficiency in
physical space (i.e., meters and seconds measured in the 3D world), and show its direct
relationship to crowd stability. To our knowledge, despite the possible applications to
visual crowd analysis, efficiency has not been addressed by the vision community.
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To compute pedestrian efficiency the intended motion of each individual must be
known. Although it is impossible to know each individual’s intention, pedestrians form
emergent behaviors (e.g., lanes or clusters) that reveal clues to their intended directions.
Still [3] notes that emergent behaviors form because it is easier “to follow immediately
behind someone who is already moving in your direction.” In other words, the emergent
behaviors formed by pedestrians suggest where they intend to move. Such behaviors de-
pend on the scene and vary temporally [4], but tend to repeat [2], forming an underlying
space-time structure in the collective motion of the crowd. By learning this structure the
intended motion of pedestrians can be estimated and used to estimate efficiency.

In this paper, we present a novel method for estimating pedestrian efficiency from
videos and use it for video analysis of crowded scenes. Our key insight is that we may
estimate the intended motion of individual pedestrians by modeling the crowd motion.
First, we introduce a space-time model that captures the latent structure induced by
the motion of the crowd. For this, we use a collection of hidden Markov models over
directional statistics distributions of optical flow. By training this model on a short video
of the scene, we encode the temporally varying multi-modal flows in the image space
resulting from the emergent behaviors of the people in the crowd. Second, we use this
model to anticipate the motion at each space-time location of the video. These predicted
local motions can then be used to estimate the intended motion of individuals passing
through each of those space-time regions. We then compare this estimate to the actual
motion represented by the instantaneous optical flow to compute pedestrian efficiency
over the entire video volume. By doing so, we measure efficiency within the scene
without identifying each individual pedestrian.

We use our pedestrian efficiency estimate to robustly detect local and global unusual
activities and to dynamically adjust motion priors for tracking individuals in videos of
crowded scenes. The experimental results on a number of videos of real-world crowded
scenes show that our method enables the accurate computation of pedestrian efficiency
which in turn leads to better predictions of scene motions. As a result, the use of pedes-
trian efficiency achieves state-of-the-art accuracy in these two fundamental tasks in
video analysis that are especially challenging in crowded scenes.

2 Related Work

Macroscopic approaches to video analysis of crowded scenes view the crowd as a col-
lection of individuals obeying a set of analytical rules. Moore et al. [5] present a hydro-
dynamics model, treating each pedestrian as a particle in a fluid. As noted by Still [3],
however, emergent behaviors such as lane formations or clustering do not occur in flu-
ids. Particles are affected only by the external forces around them, but pedestrian motion
is a result of both external forces and reactions to other pedestrians. Efficiency decreases
when pedestrians react to one another, and is inversely related to the deviation from the
crowd motion. As such, automatically estimating pedestrian efficiency enables a bet-
ter understanding of how individuals interact with the crowd, and can be used to more
accurately predict their behaviors in the scene.

Mehran et al. [6] use a social force model but do not measure the full influence of the
crowd on the individual. They represent intended velocity using instantaneous optical
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Fig. 1. Pedestrian efficiency in videos can be defined by the difference between the intended and
actual motions represented with 3D optical flow vectors. Left: The intended direction u of an
individual may be inhibited causing them to move in a different direction v. Right: We mea-
sure the difference between these motions with arc-length on the unit sphere, which is inversely
proportional to efficiency.

flow, and the average optical flow as the pedestrian’s actual velocity. This assumption
is not valid in congested scenes: if an area is highly dense and pedestrians are moving
slowly, then the averaged (and instantaneous) optical flow has a low velocity and thus
their “interaction force” will not reflect the influence of the crowd on the pedestrian’s
speed. In addition, pedestrians tend to sway when their motion is restricted [7, 8], sug-
gesting that the instantaneous optical flow does not indicate their intended motion. As
we show in Sec. 7, by using a model of the crowd motion our method more accurately
estimates the intended motion, and can measure efficiency in high-density scenes.

Tracking and anomaly detection methods often degrade when pedestrian motion
largely deviates from the crowd motion. Minor, usual deviations appear as noise to
anomaly detection, and are often addressed by complex motion descriptors such as
distributions of space-time gradients [9] or dynamic textures [10]. Tracking methods
designed for crowds [11–13] lose the target when they deviate from the learned model.
Other methods based on motion patterns [14] also assume that objects follow domi-
nant flows. Efficiency indicates the severity of the deviation from the learned model,
which we can use to detect unusual crowd activities and track pedestrians with a greater
robustness to those deviations as we demonstrate.

3 Efficiency

Individuals move through public areas according to their personal goals and with walk-
ing speeds they feel comfortable. As shown in the left image in Fig. 1, they have an
intended speed and direction, which may be inhibited by surrounding pedestrians. Hel-
bing and Vicsek [1] define the influence of surrounding pedestrians on an individual as
the interaction rate, and show it is inversely related to efficiency. Rather than computing
efficiency for each pedestrian, we estimate efficiency at each space-time pixel location
in the video. By doing so, we may analyze the scene without having to detect and track
each pedestrian.

Let t denote time and p = [x, y]
T a 2D pixel location in the video. We denote the

intended motion of the pedestrian occupying pixel p at time t by

ut(p) = [∆x,∆y,∆t]
T
, (1)
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where ∆x, ∆y, and ∆t is the change (movement) in the horizontal, vertical, and tem-
poral dimensions, respectively, and |ut(p)| = 1. The 2D optical flow ũt(p) induced
by this indented motion is computed by temporally normalizing this 3D optical flow
vector: ũt(p) = [∆x/∆t,∆y/∆t]. Similarly, let vt(p) be the 3D instantaneous optical
flow observed in the video.

We derive an image-space equivalent of the physical efficiency from Helbing et al. [2]

ũt(p) · ṽt(p)

|ũt(p)|2
. (2)

The bounds of Eq. 2, however, are not well defined. For example, if pedestrians move
faster than their intended speed (e.g., in a panic situation), then it is unbounded. As il-
lustrated on the right in Fig. 1, we compute the efficiency using the great-circle distance

et(p) = 1−
arccos

(
ut(p)Tvt(p)

)
π

(3)

that is bounded by [1, 0]. Since we represent motion using 3D optical flow vectors, Eq. 3
captures both differences in direction (longitudinal variations across the unit sphere) and
speed (latitudinal variations). To compute efficiency, however, we need the intended
motion ut(p). Next, we describe our crowd model which we use to estimate ut(p).

4 Directional Statistics Crowd Motion Model

In the absence of other pedestrians, individuals move in straight lines towards their
destinations. In higher densities, however, they naturally form organized structures (i.e.,
emergent behaviors) to utilize the available space and achieve a higher flow [15]. These
behaviors vary temporally [4] but tend to repeat [2]. We model this structured crowd
motion by training a collection of hidden Markov models (HMMs), one for each spatial
location in the frame. Our previous work [12, 9] also use a collection of HMMs but
retains appearance information in the form of spatial gradients. In this work, we train the
HMMs on directional statistics distributions of optical flow resulting in a more compact
and accurate representation. It is worth pointing out that other methods [13, 11] do not
retain the temporal dynamics of crowd flow.

As shown in Fig. 2(a), we subsample the video using a regular grid and represent the
motion in each sub-volume, or “cuboid.” Let ∇Ii be a 3D vector containing the image
gradient estimated in the horizontal, vertical, and temporal directions, respectively, and
{∇Ii | i = 1, . . . , N} be a set of N space-time gradients within a cuboid. When a
cuboid contains motion in a single direction, the space-time gradients lie on a plane
orthogonal [16] to the 3D optical flow q. Thus q can be estimated by solving [16][

1

N

N∑
i

∇Ii∇ITi

]
q = 0 . (4)

Note that we can use any optical flow estimation algorithm, for instance, those tailored
to large displacements [17], if necessary. In this work, we found our gradient-based
method sufficient and significantly faster than such dense estimation methods.



Going With the Flow: Pedestrian Efficiency in Crowded Scenes 5

Cuboid

Time

(a)

∇Ii

q
wi

(b) (c)

Fig. 2. (a) We subdivide the video into space-time cuboids. (b) The 3D optical flow q estimated
from the cuboid is orthogonal to a plane in spatio-temporal gradient space. A gradient ∇Ii that
does not lie on the plane represents uncertainty in the flow, and is orthogonal to another possible
flow vector wi. (c) The set of these possible flow vectors forms a directional distribution on the
upper-hemisphere.

Cuboids containing motion in a single direction have gradients that are coplanar,
while those containing multiple moving objects have gradients that are not. As illus-
trated in Fig. 2(b), a space-time gradient ∇Ii that does not lie on the plane suggests
motion in another direction wi orthogonal to∇Ii. The vector wi is a 3D flow vector

wi =
∇Ii × q×∇Ii
|∇Ii × q×∇Ii|

, (5)

where × is the cross-product.
As shown in Fig. 2(c), the distribution {wi | i=1, . . . , N} exists on the upper hemi-

sphere of q. It’s shape characterizes the motion in the cuboid: narrow distributions rep-
resent motion in a specific direction, and wide distributions represent motion in multiple
directions. A natural representation is the von Mises-Fisher distribution [18]

p(x) =
1

c(κ)
exp

{
κµTx

}
, (6)

where µ is the mean direction, c(κ) is a normalization constant, and κ is the concentra-
tion parameter.

We train an HMM on the von Mises-Fisher distributions observed at each spatial
grid location. HMMs are defined by J hidden states, a J×1 initial probability vector π, a
J×J transition matrix A, and a set of J emissions densities {p(O|s=j) | j=1, . . . , J}.
In our model, each observation O = {µ, κ} describes the motion within a specific
cuboid. Although κ is not necessary to estimate the intended motion, we include it
for tracking in Sec. 6.2. We consider µ and κ to be statistically independent and define
the emission densities analytically

p(O|s=j) = p(µ|s=j)p(κ|s=j) , (7)

where p(κ|s=j) is a Gamma distribution, and p(µ|s=j) a von-Mises Fisher distribu-
tion (i.e., the conjugate prior on µ [19]). We train the HMMs on a sample video of the
target scene using the Baum-Welch algorithm [20].



6 Louis Kratz and Ko Nishino

Anticipated Flow

Final
Location

Key

t f1 f2 fK
(a)

0 0.5 1 1.5
0

2

4

6

Perspective Speed Estimation

Speed

Lo
ng

itu
de

(b) (c)

Fig. 3. We estimate the intended direction by advancing each pixel location through a 3D flow
field (a) (color indicates speed and direction) that we predict from the HMMs. To estimate the
intended speed in scenes captured with a perspective projection, we fit a line to the top 5% of
speed measurements (b) at each longitudinal location of the frame (c).

5 Estimation of Intended Motion

Next, we use the trained HMMs to estimate the intended motion at each space-time lo-
cation in a different video of the same scene. We discuss direction and speed separately,
and combine them to compute the intended motion ut(p).

5.1 Intended Direction

Given the observed video up to time t and an HMM trained at spatial location p, we
compute zk(p) as a 1×J vector representing the likelihood of being in state j at time
t+ k

zk(p) = αtA
k , (8)

where A is the state transition matrix from the HMM, and αt is the scaled forward
message from the forwards-backwards algorithm [20]. As k→∞, Eq. 8 approaches the
stationary distribution of the Markov process (if it exists).

We use the set {zk(p)|k = 1, . . . ,K} to compute the optical flow after time t. We
select K large enough to approach the stationary distribution. Let fk(p) be the flow
predicted from zk(p)

fk(p) =

J∑
j=1

zk,j(p)E [p(µ|s=j)] , (9)

where p(µ|s=j) is the emission density from Eq. 7. The resulting flow field (i.e., fk(p)
for all spatial locations and values of k) represent the anticipated flow of the crowd.

As shown in Fig. 3(a), we estimate the future location of each point p by advancing
it through the anticipated flow field. Let f̃k(p) be the 2D optical flow computed from
fk(p), and p̂k the location of p at time k+t. The next location p̂k+1 is computed by
following the predicted flow at the previous point

p̂k+1 = p̂k + f̃k(p̂k) . (10)
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Eq. 10 is initialized with p̂0 =p. The final location p̂K indicates, according the crowd
motion, the intended location of the pedestrian occupying p. The intended direction is
the difference of this point from the current location

ūt(p) =
1

Z
(p̂K − p) , (11)

where Z is a normalization term such that |ūt(p)| = 1.

5.2 Intended Speed

The walking speed of pedestrians has been well studied and is near constant if there is no
congestion. Zip’s [21] least-effort principle implies that pedestrians minimize metabolic
energy when walking at roughly 1.33 meters per second [22], which has been verified
in observational studies [23, 24]. For scenes recorded at a distance, we may assume
orthographic camera projection and thus a constant intended speed can be estimated for
all pedestrians. We approximate the intended speed as the maximum observed speed in
the training video. Intuitively, we are identifying the few instances where pedestrians
can move freely due to lulls in traffic or less-crowded areas. To address unreliable or
erroneous flow estimates, we use Chauvenet’s criterion [25] to remove outliers.

For near field views that exhibit perspective distortion, as shown in Fig. 3(b), we
estimate the intended speed by observing the relationship between each longitudinal
frame location. First, we identify the fastest 5% of speed measurements from each lon-
gitudinal frame location. Due to the perspective projection, the speeds across the frame
have near-linear relationship. We find a least-squares line fit to the speed measurements
to estimate the desired speed over the entire image. Outliers are also removed using
Chauvenet’s criterion.

Finally, given intended speed s(p) and direction ūt(p), we may compute the in-
tended motion

ut(p) =
[
ūt(p)T , s(p)

]T
, (12)

and normalize such that |ut(p)| = 1.

6 Applications

The pedestrian efficiency computed for each frame of the video can be used to analyze
the scene despite the crowd. In this paper, we demonstrate its use in two critical video
analysis tasks that are particularly challenging for crowded scenes: anomaly detection
and pedestrian tracking.

6.1 Anomaly Detection

Low pedestrian efficiency is an indicator of unusual activities. Atypical motions de-
crease efficiency in local areas, and crowd disasters contain people moving irrationally.
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We can identify global anomalies, i.e., affecting a large portion if not the entire crowd,
as frames that have low average efficiency values

ēt =
1

|P|
∑
p∈P

et(p) ,

where P is the set of 2D pixel locations.
We may also detect local anomalies, such as individuals moving against the crowd

flow. Such offenders will exhibit low efficiency (since the training data lacks their in-
tended motion) and decrease the efficiency in their immediate vicinity (as surrounding
pedestrians must avoid them). We identify local unusual events as space-time regions
with low efficiency. Since many scenes naturally contain low efficiency (a congested
train station, for example), we normalize the efficiency ẽt(p) = et(p)

Z(p) , where Z(p) is
the average efficiency at spatial location p of the training data.

We identify the space-time locations with low efficiency using a space-time Markov
random field. Details are omitted for limited space, but this can be achieved with binary
latent variables indicating whether the scene point exhibits usual activities or not. The
latent variables can be computed through energy minimization of an error function con-
sisting of a data term that returns the efficiency value if the scene point contains unusual
activity together with an Ising model smoothing term. This energy minimization can be
efficiently solved with graph-cuts [26, 27].

6.2 Tracking

Efficiency indicates how much an individual is conforming to the flow of the crowd. As
such, we may use it as a dynamic prior on the individual’s motion to probabilistically
track pedestrians in crowded scenes.

Let xt be the 2D pixel location at time t of a pedestrian being tracked. Object-
centric methods [28, 29] assume pedestrians exhibit smooth motion and impose (often
first order) stochastic dynamics to update the location

xt+1 = xt + ht + ε , (13)

where ht is a 2D flow vector and ε is (typically Gaussian) noise. Crowd methods [12,
13, 11] use a learned model of the crowd

xt+1 = xt + c(xt) + ε , (14)

where c(xt) is the flow of the crowd at location xt. Using our model, c(xt) is the
predicted von Mises-Fisher distribution (µ and κ) from the HMM at location xt.

Macroscopic approaches assume the crowd motion model yields an accurate pre-
diction, and do not perform well when pedestrians deviate from the crowd (i.e., areas of
low efficiency). Microscopic (object-centric) approaches that rely on individual motion
models, such as a linear model, struggle in areas without visible backgrounds (often
high efficiency). We use pedestrian efficiency as an indicator of how much to trust the
crowd motion model and dynamically weight the two motion models

xt+1 = xt + et(xt)ct(xt) + [1− et(xt)]ht + ε . (15)
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Fig. 4. Frames from six videos on which we evaluate our method. The concourse (a) [12],
street (b) [6], and sidewalk (c) [30] scenes contain pedestrians moving in many different di-
rections. The platform (d), escalator (f) (both from [31]), and intersection (e) [30] contain more
obvious emergent behaviors such as lane formation.

For the individual’s motion ht we use the expected vector of a von Mises-Fisher distri-
bution fitted to the previous flow observations. Intuitively, we are switching between the
crowd motion model and a simple individual motion model that maintains the momen-
tum at that location based on the pedestrian efficiency; when the pedestrian efficiency is
high go with the crowd flow and otherwise let the individual maintain its own previous
motion. Our final state-transition density is a von Mises-Fisher distribution computed
by weighting the expected directions and variances.

7 Experimental Results

Fig. 4 shows frames from six videos of crowded scenes that we use to evaluate our
method. For each scene, we train the HMMs on a sample video sequence, and use them
to compute the efficiency in a video of the same scene recorded at a different time.
The concourse (4(a) from [12]), sidewalk (4(c) from [30]), and street (4(b) from [6])
scenes have few physical obstacles and contain many interactions. The platform (d)
and escalator (f) (both from [31]) scenes contain low efficiency due to bottlenecks. The
intersection ((e) from [30]) contains pedestrians avoiding each other as they intersect in
the middle of the frame. Many of the videos are available from the respective authors.

Fig. 5 shows examples of pedestrians moving inefficiently. The left most example
shows an individual changing direction due to congestion. His intended direction is
to the left, and efficiency drops when moving around other pedestrians. The middle
example shows pedestrians avoiding an oncoming individual (video from [6]). Their
intended direction is vertical, and efficiency decreases as they move to the side. The

Fig. 5. Low efficiency (red=low efficiency, blue=high) due to congestion (left), pedestrians avoid-
ing an individual (middle), and a lack of motion (right). The yellow solid arrow is the intended
motion, and the green dashed arrow depicts the actual motion (optical flow).
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Average Error

Fig. 6. The accuracy of our estimate of future directions for a number of pedestrians (left), along
with averages compared with Mehran et al. [6] (right).

pedestrians in the right most example are standing still and exhibit lower efficiency
than those moving in the lower left of the image.

Since it is impossible to know a pedestrian’s intentions, we cannot directly measure
the accuracy of our estimated intended motion. We can, however, assume that pedestri-
ans move in their intended direction over time. Let {x̂t|t= 1, . . . , T} be a sequence of
ground-truth tracking locations for a specific pedestrian. We measure the error

1

T

T∑
t=1

arccos

(
ūt(x̂t)

T [x̂t+w − x̂t]

|x̂t+w − x̂t|

)
, (16)

where ūt is the estimated intended direction from Eq. 11, and w is a window size that
depends on the subject (typically the duration the subject is in the scene).

The left graph in Fig. 6 shows the estimation error for a number of subjects from
different scenes. For almost all of the subjects the estimation error is below 0.1 (about
6◦). None of the error rates exceed 0.2 which is small given the resolution of the video.
The theoretical maximum error is π, and thus at most the error is 0.2/π ≈ 6%. The
right table in Fig. 6 shows the average error for all scenes, and the error using the op-
tical flow for the intended motion as suggested by Mehran et al. [6]. Scenes with less
structure, such as the concourse and street, have higher errors due to the larger num-
ber of directions that pedestrians move. Compared with Mehran et al. [6], our method
achieves consistently lower errors.

7.1 Anomaly Detection

First, we detect global anomalies as frames with low average efficiency on the Uni-
versity of Minnesota Crowd Dataset [32]. The dataset contains a number of usual and
unusual video segments from 3 different scenes. For each scene, we train the HMMs
on a usual sequence, and estimate efficiency on the remaining sequences. A frame is
considered unusual if its average efficiency is below a specific threshold that is selected
empirically. Fig. 7(a) shows visualizations of the efficiency for usual (top) and unusual
activities (bottom) for the first scene. The pedestrians in the unusual frame (bottom)
exhibit lower efficiency than those in the usual frame (top).

The left graph in Fig. 8 shows the average efficiency plotted over time for a specific
scene in the UMN data set. The red and green points are the average efficiency from
clips of usual and unusual activities, respectively. The average efficiency drops during
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Fig. 7. The efficiency on frames from the UMN data set (a) is high in usual scenes (top) and low
in unusual scenes (bottom). Pedestrians that move against the crowd exhibit low efficiency (b).
We detect such anomalies (c) with higher accuracy than our previous method [9] (d) (top) and
Mahadevan et al. [10] (bottom). The color indicates the detection results: blue are true positives,
red are false negatives, and pink are false positives.

all six clips of unusual activities. We vary the threshold to compute an ROC curve.
The area under the ROC curve was 0.92, which compares favorably with 0.96 in [6]
and 0.99 in [33]. Our slightly poorer performance is due to the higher efficiency at the
beginning and end of each unusual sequence (where pedestrians are moving normally)
as shown in the left graph in Fig. 8.

We evaluate our local anomaly detection method on the UCSD Anomaly Detection
Dataset [34] from [10] and videos of two train station scenes from [9]. We measure
detection accuracy by the average of the true positive rates and true negative rates. The
UCSD data set provides ground truth for some sequences. We hand-labeled the ground-
truth for the remaining sequences and those of the train station.

Fig. 7 shows example frames of local anomalies detected in both datasets. The in-
tended motion of pedestrians moving against the crowd cannot be determined, and thus
such individuals exhibit low efficiency as shown in Fig. 7(b). We successfully detect
such pedestrians as shown in Fig. 7(c). As shown in Fig. 7(d), efficiency is less sensi-
tive to minor deviations than our previous method [9] and that of Mahadevan et al. [10].

The middle graph in Fig. 8 shows the detection accuracy of our method on 9 se-
quences compared with that of Mahadevan et al. [10], and the right graph in Fig. 8
compares the results on 8 sequences with our previous method [9]. We use the results
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Fig. 8. Left: Efficiency drops when crowds in the UMN data set enter unusual states, as shown by
the green points in the graph. Middle: Accuracy of local anomaly detection for 9 sequences in the
UCSD Crowd Dataset [34] compared with [10]. Right: Accuracy of 8 sequences from two train
station scenes compared with our previous method [9]. Using efficiency achieves higher accuracy
for all sequences compared with other approaches.
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Concourse Street Platform Escalator Intersection Sidewalk
Ours 8.7 3.3 2.8 8.5 3.1 7.4
Kratz and Nishino [12] 6.8 47.6 17.3 24.8 3.56 9.9
Rodriguez et al. [11] 24.7 14.8 29.9 60.4 25.9 11.9

Table 1. Tracking errors averaged over multiple subjects for the different scenes using estimated
pedestrian efficiency compared with our previous crowd motion model approach [12] and that
of Rodriguez et al. [11]. Using efficiency achieves lowest error on almost all scenes. On the
concourse scene we achieve comparable results to our previous method [12].

of Mahadevan et al. [10] posted on the web for comparison. The use of pedestrian effi-
ciency achieves consistently higher accuracy in both cases.

7.2 Tracking

We quantitatively evaluated our tracking method using hand-labeled ground truth of tar-
gets. Given a ground-truth location x̂t and tracking result xt, the tracking error |x̂t−xt|
is averaged over all frames {t=1, . . . , T}. Table 1 shows the tracking errors (average
over multiple subjects for each sequence) using the estimated pedestrian efficiency com-
pared with our previous method [12] and that of Rodriguez et al. [11]. Using pedestrian
efficiency achieves superior results on all scenes but one, and significantly lower er-
rors on the platform, escalator, and street scenes where pedestrians move with lower
efficiency due to higher density.

Pedestrians that deviate from the flow of the crowd present challenges to tracking.
Since such pedestrians naturally have low efficiency, our method is able to reliably
track them by gracefully switching to simple individual motion models as defined in
Eq. 15. The left most four images in Fig. 9 shows two tracking results using our method
and just the crowd motion model (Eq. 14). In both cases, the pedestrian is moving
against the crowd: the first is moving left to right, and the second is moving towards
the bottom of the frame. As shown in green, the crowd model assumes pedestrians are
moving with the crowd, drifts, and loses the target. Our method, shown in red, is able
to compensate for the anomaly and accurately track the targets. The middle graph in
Fig. 9 shows the tracking errors for 16 anomalous targets using both methods. Using
pedestrian efficiency achieves a consistently lower error.

The right graph in Fig. 9 shows the ratio of our tracking error to the tracking er-
ror using just the crowd model for different subjects. High ratios (i.e., 1) indicate that
our method performs similar to using just the crowd motion model, while a low ra-
tio indicates improvement by our method. The downward trend of the points show
the advantage of using pedestrian efficiency: our method vastly improves tracking in
crowds when pedestrians are moving inefficiently, and performs similarly to crowd mo-
tion models when pedestrians are moving with the flow.

8 Conclusion

In this paper, we introduced the use of pedestrian efficiency for video analysis of crowded
scenes. We showed that the pedestrian efficiency can be computed from a video without
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Fig. 9. Left: Tracking results of pedestrians deviating from the general crowd flow in the con-
course (top row) and UCSD dataset (bottom row) using our method (red) and just a crowd motion
model (green). The crowd motion model assumes that the pedestrians are moving with the crowd
causing the tracker to drift (left column) or lose the target (right column). Middle: Since such
anomalous pedestrians naturally have low efficiency, our method achieves a lower tracking error
for all the tested subjects. Right: Pedestrians moving inefficiently have a low ratio (close to 0)
and the downward trend indicates crowd motion models are only accurate when pedestrians are
moving efficiently.

detecting and tracking individuals. The computed pedestrian efficiency can be used to
reliably identify global and local anomalous activities, and robustly track individuals
through crowded scenes regardless of whether they are conforming to the crowd flow
or not. The experimental results show that the computation and use of pedestrian effi-
ciency can indeed enable more reliable video analysis of crowded scenes. We believe
that measuring efficiency is but the first step to recognizing the impact of individuality
on crowds, and provides new means to further study the complex interactions between
pedestrians in videos of crowded scenes.
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